Real Time Data exploration
Real time Data Exploration can be categorized into two types:
- Real time Univariate Data Exploration
- Real time Bivariate Data Exploration
Univariate exploration
Use univariate
function to get the summarized univariate statistics for the data. Only argument needed for this function is the BET table for generating the summarized results. It returns a dataframe with all the univariate stats.
#Importing artml explore module for calculating univariate
from artml.explore import stats
stats.univariate(BET)
Created univarate statistics table looks like the one below. As the BET gets updated with new data, table also updates in real time to display the stats
Stats | feature 1 | feature 2 | feature 3 | feature 4 | feature 5 |
---|---|---|---|---|---|
Count | ---------- | --------- | --------- | --------- | --------- |
Mean | ---------- | --------- | --------- | --------- | --------- |
Variance | ---------- | --------- | --------- | --------- | --------- |
Standard_deviation | ---------- | --------- | --------- | --------- | --------- |
coeff_of_variation | ---------- | --------- | --------- | --------- | --------- |
skewness | ---------- | --------- | --------- | --------- | --------- |
Kurtosis | ---------- | --------- | --------- | --------- | --------- |
Bivariate exploration
For getting bivariate stats for the data use covariance
or correlation
functions. These functions explores the concept of relationship between two attributes, whether there is an association and the strength of this association.
## Import artml explore module for calculating bivariate
from artml.explore import stats
stats.covariance(BET)
stats.correlation(BET)
Also, for comparing whether there are differences between two attributes and the significance of these differences, use Ztest
or Ttest
functions.
stats.Ztest(BET, 'feature1name','feature2name')
stats.Ttest(BET, 'feature1name','feature2name')
Similarly, we can perform Ftest, ANOVA & Chi2 test using the syntaxes in the artml library.